Adaptive Robust Terminal Sliding Mode Control with Integral Backstepping Synthesized Method for Autonomous Ground Vehicle Control

Author:

Taghavifar Hamid1ORCID,Mohammadzadeh Ardashir2ORCID

Affiliation:

1. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada

2. Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang 110044, China

Abstract

Autonomous ground vehicles (AGVs) operating in complex environments face the challenge of accurately following desired paths while accounting for uncertainties, external disturbances, and initial conditions, necessitating robust and adaptive control strategies. This paper addresses the critical path-tracking task in AGVs through a novel control framework for multilevel speed AGVs, considering both structured and unstructured uncertainties. The control system introduced in this study utilizes a nonlinear adaptive approach by integrating integral backstepping with terminal sliding mode control (IBTSMC). By incorporating integral action, IBTSMC continuously adjusts the control input to minimize tracking errors, improving tracking performance. The hybridization of the terminal sliding mode method enables finite time convergence, robustness, and a chatter-free response with reduced sensitivity to initial conditions. Furthermore, adaptive control compensators are developed to ensure robustness against unknown but bounded external disturbances. The Lyapunov stability theorem is employed to guarantee the global asymptotic stability of the closed-loop system and the convergence of tracking errors to the origin within finite time. To validate the effectiveness of the proposed control scheme, high-fidelity cosimulations are conducted using CarSim and MATLAB. Comparative analysis is performed with other methods reported in the literature. The results confirm that the proposed controller demonstrates competitive effectiveness in path-tracking tasks and exhibits strong efficiency under various road conditions, parametric uncertainties, and unknown disturbances.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3