Abstract
A nonlinear dynamic model for a planetary gearbox with tooth breakage fault is built based on an improved rigid multibody model, and the effects of tooth breakage size and rotational speed on the vibration response of the planetary gearbox are investigated numerically and experimentally. A time-varying mesh stiffness model of planetary gears with tooth breakage fault is established. Dynamic simulations of a healthy planetary gear and seven fault gears with different breakage sizes under several rotational speeds are carried out. Experiments for healthy, half tooth breakage fault and whole tooth breakage fault planetary gears under several rotational speeds are performed. Amplitude analysis, spectrum analysis and envelope spectrum analysis are applied on the numerical and experimental vibration signals. The dynamic model is validated by experiment. The analysis results reveal the resonance and modulation characteristics in the vibration response, and the law of the vibration changes with breakage size and rotational speed.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献