Dynamic characteristics analysis of gear tooth modification in a three-stage gear system

Author:

Mabrouk Mahmoud1ORCID,Liu Hui1,Pengfei Yan2,Pu Gao1ORCID

Affiliation:

1. Vehicle Research Center, Beijing Institute of Technology, Beijing, China

2. North University of China, Taiyuan, China

Abstract

Gears serve as vital elements in high-efficiency mechanical transmissions, playing a pivotal role in vehicles. Employing gear modification has the capacity to significantly enhance the dynamic properties of the Planetary Gear Transmission (PGT) systems. In this study, the investigation has been directed toward a three-stage PGT model system with a comprehensive consideration of various vibration-related factors that affect the dynamic behavior of the system. These factors are encompassed by Time Varying Mesh Stiffness (TVMS), torsion and bending forces experienced by connecting shafts, dynamic Transmission Error (TE), impact of gear meshing eccentric load forces, inherent flexibility in the supporting shaft structure, and influence of torque and power fluctuations originating from a multi-cylinder engine. The estimation of TVMS is carried out for both external-external and external-internal teeth meshing pairs, utilizing the Potential Energy Method (PEM). Subsequently, this study employs the lumped parameter method to establish a model with a specific objective of investigating the lateral-torsional-coupling behavior within adopted PGT model system. The lateral vibration displacement characteristics of the PGT model system is deeply analyzed, revealing the influence of speed on lateral vibration and displacement frequency domain characteristics through a 3D waterfall diagram. Furthermore, a Tooth Profile Modification (TPM) method is applied utilizing two distinct parameters namely [Formula: see text] TPM parameter and [Formula: see text] TPM parameter. The objective is to mitigate vibrations and evaluate the performance of the adopted PGT model after employing each TPM parameter through both TVMS and Root Mean Square (RMS).

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3