Vehicle State Estimation Based on Sage–Husa Adaptive Unscented Kalman Filtering

Author:

Chen Yong123ORCID,Yan Hao1ORCID,Li Yuecheng123

Affiliation:

1. College of Mechanical and Electronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China

2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100192, China

3. Beijing Laboratory for New Energy Vehicles, Beijing 100192, China

Abstract

To combat the impacts of uncertain noise on the estimation of vehicle state parameters and the high cost of sensors, a state-observer design with an adaptive unscented Kalman filter (AUKF) is developed. The design equation of the state observer is derived by establishing the vehicle’s three degrees-of-freedom (DOF) model. On this basis, the Sage–Husa algorithm and unscented Kalman filter (UKF) are combined to form the AUKF algorithm to adaptively update the statistical feature estimation of measurement noise. Finally, a co-simulation using Carsim and Matlab/Simulink confirms the algorithm is effective and reasonable. The simulation results demonstrate that the proposed algorithm, compared with the UKF algorithm, increases estimation accuracy by 19.13%, 32.8%, and 39.46% in yaw rate, side-slip angle, and longitudinal velocity, respectively. This is because the proposed algorithm adaptively adjusts the measurement noise covariance matrix, which can estimate the state parameters of the vehicle more accurately.

Funder

Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3