Vehicle State Estimation by Integrating the Recursive Least Squares Method with a Variable Forgetting Factor with an Adaptive Iterative Extended Kalman Filter

Author:

Chen Yong123,Huang Yanmin1,Song Zeyu1

Affiliation:

1. College of Mechanical and Electronic Engineering, Beijing Information Science and Technology University, Beijing 100192, China

2. Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100192, China

3. Beijing Laboratory for New Energy Vehicles, Beijing 100192, China

Abstract

The sideslip angle and the yaw rate are the key state parameters for vehicle handling and stability control. To improve the accuracy of the input parameters and the time-varying characteristics of noise covariance in state estimation, a combined method of recursive least squares with a variable forgetting factor and adaptive iterative extended Kalman filtering is proposed for estimation. Based on the established three-degrees-of-freedom nonlinear model of the vehicle, the variable forgetting factor recursive least squares method is used to identify the tire cornering stiffness and serves as an input for vehicle state estimation. An innovative algorithm is used to optimise the uncertain noise covariance in the iterative extended Kalman filter (IEKF) process. Finally, with the help of the joint simulation of CarSim2019 and Matlab/Simulink R2022a, a distributed drive electric vehicle state parameter estimation model is established, and a simulation analysis of typical working conditions is carried out. Furthermore, an experiment is conducted with the pix moving vehicle and the integrated navigation system. The simulation and experimental results show that, compared to the traditional extended Kalman filter algorithm, the proposed algorithm improves the estimation accuracy of the yaw rate, sideslip angle, and longitudinal speed by 58.17%, 57.2%, and 76.47%, respectively, which shows that the algorithm has a higher estimation accuracy and a stronger applicability to provide accurate state information for vehicle handling and stability control.

Funder

Beijing Laboratory for New Energy Vehicles

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3