Visual SLAM Mapping Based on YOLOv5 in Dynamic Scenes

Author:

Zhang Xinguang,Zhang Ruidong,Wang Xiankun

Abstract

When building a map of a dynamic environment, simultaneous localization and mapping systems have problems such as poor robustness and inaccurate pose estimation. This paper proposes a new mapping method based on the ORB-SLAM2 algorithm combined with the YOLOv5 network. First, the YOLOv5 network of the tracing thread is used to detect dynamic objects of each frame, and to get keyframes with detection of dynamic information. Second, the dynamic objects of each image frame are detected using the YOLOv5 network, and the detected dynamic points are rejected. Finally, the global map is constructed using the keyframes after eliminating the highly dynamic objects. The test results using the TUM dataset show that when the map is constructed in a dynamic environment, compared with the ORB-SLAM2 algorithm, the absolute trajectory error of our algorithm is reduced by 97.8%, and the relative positional error is reduced by 59.7%. The average time consumed to track each image frame is improved by 94.7% compared to DynaSLAM. In terms of algorithmic real-time performance, this paper’s algorithm is significantly better than the comparable dynamic SLAM map-building algorithm DynaSLAM.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. A survey of state-of-the-art on visual SLAM;Expert Syst. Appl.,2022

2. Moncular Vision SLAM Research for Parking Environment with low Light;Int. J. Automot. Technol.,2022

3. An improved multi-object classification algorithm for visual SLAM under dynamic environment;Intell. Serv. Robot.,2021

4. ORB-SLAM: A Versatile and Accurate Monocular SLAM System;IEEE Trans. Robot.,2015

5. Improved feature point extraction method of ORB-SLAM2 dense map;Assem. Autom.,2022

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3