GY-SLAM: A Dense Semantic SLAM System for Plant Factory Transport Robots

Author:

Xie Xiaolin12,Qin Yibo2ORCID,Zhang Zhihong2,Yan Zixiang2,Jin Hang2,Xu Man2,Zhang Cheng2

Affiliation:

1. Longmen Laboratory, Luoyang 471003, China

2. College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China

Abstract

Simultaneous Localization and Mapping (SLAM), as one of the core technologies in intelligent robotics, has gained substantial attention in recent years. Addressing the limitations of SLAM systems in dynamic environments, this research proposes a system specifically designed for plant factory transportation environments, named GY-SLAM. GY-SLAM incorporates a lightweight target detection network, GY, based on YOLOv5, which utilizes GhostNet as the backbone network. This integration is further enhanced with CoordConv coordinate convolution, CARAFE up-sampling operators, and the SE attention mechanism, leading to simultaneous improvements in detection accuracy and model complexity reduction. While mAP@0.5 increased by 0.514% to 95.364, the model simultaneously reduced the number of parameters by 43.976%, computational cost by 46.488%, and model size by 41.752%. Additionally, the system constructs pure static octree maps and grid maps. Tests conducted on the TUM dataset and a proprietary dataset demonstrate that GY-SLAM significantly outperforms ORB-SLAM3 in dynamic scenarios in terms of system localization accuracy and robustness. It shows a remarkable 92.59% improvement in RMSE for Absolute Trajectory Error (ATE), along with a 93.11% improvement in RMSE for the translational drift of Relative Pose Error (RPE) and a 92.89% improvement in RMSE for the rotational drift of RPE. Compared to YOLOv5s, the GY model brings a 41.5944% improvement in detection speed and a 17.7975% increase in SLAM operation speed to the system, indicating strong competitiveness and real-time capabilities. These results validate the effectiveness of GY-SLAM in dynamic environments and provide substantial support for the automation of logistics tasks by robots in specific contexts.

Funder

National Key Research and Development Program of China Project

Henan Province Science and Technology Tacking Project of China Project

Luoyang City Public Welfare Special Project of China Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3