Improved IDW Interpolation Application Using 3D Search Neighborhoods: Borehole Data-Based Seismic Liquefaction Hazard Assessment and Mapping

Author:

Kim Jongkwan,Han Jintae,Park KahyunORCID,Seok SangmukORCID

Abstract

Traditional inverse distance weighting (IDW) interpolation is a process employed to estimate unknown values based on neighborhoods in 2D space. Proposed in this study is an improved IDW interpolation method that uses 3D search neighborhoods for effective interpolation on vertically connected observation data, such as water level, depth, and altitude. Borehole data are the data collected by subsurface boring activities and exhibit heterogeneous spatial distribution as they are densely populated near civil engineering or construction sites. In addition, they are 3D spatial data that show different subsurface characteristics by depth. The subsurface characteristics observed as such are used as core data in spatial modeling in fields, such as geology modeling, estimation of groundwater table distribution, global warming assessment, and seismic liquefaction assessment, among others. Therefore, this study proposed a seismic liquefaction assessment and mapping workflow using an improved IDW application by combining geographic information system (GIS) (ArcGIS (Esri, Redlands, CA, USA)), NURBS-based 3D CAD system (Rhino/Grasshopper (Robert McNeel & Associates, Seattle, WA, USA)), and numerical analysis system (MATLAB (MathWorks, Natick, MA, USA)). The 3D neighborhood search was conducted by the B-rep-based 3D topology analysis, and the mapping was done under the 2.5D environment by combining the voxel layer, DEM, and aerial images. The experiment was performed by collecting data in Songpa-gu, Seoul, which has the highest population density among the OECD countries. The results of the experiment showed between 7 and 105 areas with liquefaction potentials according to the search distance and the method of the approach. Finally, this study improved users’ accessibility to interpolation results by producing a 3D web app that used REST API based on OGC I3S Standards. Such an approach can be applied effectively in spatial modeling that uses 3D observation data, and in the future, it can contribute to the expansion of 3D GIS application.

Funder

Key Project of the Korea Institute of Civil Engineering and Building Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference46 articles.

1. A comparative analysis of different DEM interpolation methods;Egypt. J. Remote Sens. Space Sci.,2013

2. Fast inverse distance weighting-based spatiotemporal interpolation: A web-based application of interpolating daily fine particulate matter PM2.5 in the contiguous U.S. using parallel programming and k-d tree;Int. J. Environ. Res. Public Health,2014

3. Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation;Civil Eng. Environ. Syst.,2009

4. Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach;Eng. Geol.,2013

5. Development of a progressive dual kriging technique for 2D and 3D multi-parametric MRI data interpolation;Comput. Methods Biomech. Biomed. Eng. Imag. Vis.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3