Light quality and spatial variability influences on seedling regeneration in Hawaiian lowland wet forests

Author:

Rosam Jodie R.1ORCID,Warman Laura2,Ostertag Rebecca1ORCID,Perroy Ryan1ORCID,Cordell Susan2ORCID

Affiliation:

1. University of Hawaiʻi at Hilo Hilo Hawai‘i USA

2. Institute of Pacific Islands Forestry USDA Forest Service Hilo Hawai‘i USA

Abstract

Abstract Tropical forest understories tend to be light‐limited. The red‐to‐far‐red ratio (R:FR) is a useful and reliable index of light quality and its spatial variability can influence competition between native and non‐native seedlings. While per cent light transmittance has been quantified in some Hawaiian lowland wet forests (HLWF), no information exists on how the spatial distribution of understorey light varies in relation to species invasion, or if patterns of seedling regeneration and light are linked. We measured the R:FR of light in the understorey to assess light quality in three HLWF forest types: native‐dominated, partially invaded and Psidium cattleyanum‐ (strawberry guava) dominated to quantify light quality in the understorey (0–50 cm height). We also identified relationships between light quality and native and non‐native seedling presence, diversity and abundance. Together, these data can help to determine the restoration potential of HLWF. Linear mixed‐effect modelling showed that native‐dominated forests had significantly greater R:FR than P. cattleyanum‐dominated forests, demonstrating a transformation in the light environment with increased invasion. Heterogeneity in R:FR varied more across sites than among forest types. In both native‐dominated and partially invaded forests, there were more native seedlings in the low‐quality R:FR (0.0–0.40) category and fewer in the medium‐ (0.41–0.70), and high‐quality (≥0.71) light categories than would be expected by chance, and there were no native seedlings in the P. cattleyanum‐dominated forests. Native‐dominated forests had greater species richness and abundance of native seedlings than the partially invaded forests, likely due to propagule availability. However, the spatial clustering of seedlings, the mismatch of native seedlings in light environments less suitable, and a considerable proportion of open high‐quality microsites, highlights that conditions are not optimal for native species in HLWF in the long term. Synthesis and applications. The native‐dominated and partially invaded forests still hold conservation value, despite variation among sites. Seedling additions could be targeted to different R:FR environments and at different spatial scales, but the lack of a strong relationship between R:FR and seedling number suggests that other factors besides light quality should be considered in seedling enrichment or other management activities.

Funder

Strategic Environmental Research and Development Program

National Science Foundation Graduate Research Fellowship Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3