Rumen Fermentation Parameters Prediction Model for Dairy Cows Using a Stacking Ensemble Learning Method

Author:

Wang Yuxuan1,Zhou Jianzhao1,Wang Xinjie1,Yu Qingyuan2,Sun Yukun2,Li Yang2,Zhang Yonggen2,Shen Weizheng1,Wei Xiaoli1

Affiliation:

1. College of Electric and Information, Northeast Agricultural University, Harbin 150030, China

2. College of Animal Sciences and Technology, Northeast Agricultural University, Harbin 150030, China

Abstract

Volatile fatty acids (VFAs) and methane are the main products of rumen fermentation. Quantitative studies of rumen fermentation parameters can be performed using in vitro techniques and machine learning methods. The currently proposed models suffer from poor generalization ability due to the small number of samples. In this study, a prediction model for rumen fermentation parameters (methane, acetic acid (AA), and propionic acid (PA)) of dairy cows is established using the stacking ensemble learning method and in vitro techniques. Four factors related to the nutrient level of total mixed rations (TMRs) are selected as inputs to the model: neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), and dry matter (DM). The comparison of the prediction results of the stacking model and base learners shows that the stacking ensemble learning method has better prediction results for rumen methane (coefficient of determination (R2) = 0.928, root mean square error (RMSE) = 0.968 mL/g), AA (R2 = 0.888, RMSE = 1.975 mmol/L) and PA (R2 = 0.924, RMSE = 0.74 mmol/L). And the stacking model simulates the variation of methane and VFAs in relation to the dietary fiber content. To demonstrate the robustness of the model in the case of small samples, an independent validation experiment was conducted. The stacking model successfully simulated the transition of rumen fermentation type and the change of methane content under different concentrate-to-forage (C:F) ratios of TMR. These results suggest that the rumen fermentation parameter prediction model can be used as a decision-making basis for the optimization of dairy cow diet compositions, rapid screening of methane emission reduction, feed beneficial to dairy cow health, and improvement of feed utilization.

Funder

National Key Research and Development Program of China

Heilongjiang Postdoctoral Scientific Research Developmental Fund

earmarked fund

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3