Soft Sensor Modeling Method for the Marine Lysozyme Fermentation Process Based on ISOA-GPR Weighted Ensemble Learning

Author:

Lu Na1,Wang Bo1,Zhu Xianglin1

Affiliation:

1. Key Laboratory of Agricultural Measurement and Control Technology and Equipment for Mechanical Industrial Facilities, School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Due to the highly nonlinear, multi-stage, and time-varying characteristics of the marine lysozyme fermentation process, the global soft sensor models established using traditional single modeling methods cannot describe the dynamic characteristics of the entire fermentation process. Therefore, this study proposes a weighted ensemble learning soft sensor modeling method based on an improved seagull optimization algorithm (ISOA) and Gaussian process regression (GPR). First, an improved density peak clustering algorithm (ADPC) was used to divide the sample dataset into multiple local sample subsets. Second, an improved seagull optimization algorithm was used to optimize and transform the Gaussian process regression model, and a sub-prediction model was established. Finally, the fusion strategy was determined according to the connectivity between the test samples and local sample subsets. The proposed soft sensor model was applied to the prediction of key biochemical parameters of the marine lysozyme fermentation process. The simulation results show that the proposed soft sensor model can effectively predict the key biochemical parameters with relatively small prediction errors in the case of limited training data. According to the results, this model can be expanded to the soft sensor prediction applications in general nonlinear systems.

Funder

National Natural Science Foundation of China

Wuxi Science and Technology Plan ProjectBasic Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3