Development of an Alternative In Vitro Rumen Fermentation Prediction Model
Author:
Wang Xinjie1, Zhou Jianzhao1, Jiang Runjie1, Wang Yuxuan1ORCID, Zhang Yonggen2, Wu Renbiao1, A Xiaohui3, Du Haitao4, Tian Jiaxu1, Wei Xiaoli1, Shen Weizheng1
Affiliation:
1. College of Electric and Information, Northeast Agricultural University, Harbin 150038, China 2. College of Animal Sciences and Technology, Northeast Agriculture University, Harbin 150038, China 3. Heilongjiang Academy of Agricultural Sciences Animal Husbandry and Veterinary Branch, Harbin 150086, China 4. Heilongjiang Dairy Industry Association, Harbin 150040, China
Abstract
The aim of this study is to identify an alternative approach for simulating the in vitro fermentation and quantifying the production of rumen methane and rumen acetic acid during the rumen fermentation process with different total mixed rations. In this experiment, dietary nutrient compositions (neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), and dry matter (DM)) were selected as input parameters to establish three prediction models for rumen fermentation parameters (methane and acetic acid): an artificial neural network model, a genetic algorithm-bp model, and a support vector machine model. The research findings show that the three models had similar simulation results that aligned with the measured data trends (R2 ≥ 0.83). Additionally, the root mean square errors (RMSEs) were ≤1.85 mL/g in the rumen methane model and ≤2.248 mmol/L in the rumen acetic acid model. Finally, this study also demonstrates the models’ capacity for generalization through an independent verification experiment, as they effectively predicted outcomes even when significant trial factors were manipulated. These results suggest that machine learning-based in vitro rumen models can serve as a valuable tool for quantifying rumen fermentation parameters, guiding the optimization of dietary structures for dairy cows, rapidly screening methane-reducing feed options, and enhancing feeding efficiency.
Funder
National Key Research and Development Program of China
Reference32 articles.
1. Development of prediction models for quantification of total methane emission from enteric fermentation of young Holstein cattle at various ages;Jiao;Agric. Ecosyst. Environ.,2014 2. Enteric methane emission models for diverse beef cattle feeding systems in South-east Asia: A meta-analysis;Tee;Anim. Feed Sci. Technol.,2022 3. Intestinal methane production and emission reduction measures of ruminant livestock;Yan;J. Domest. Anim. Ecol.,2018 4. Wang, Y., Zhou, J., Wang, X., Yu, Q., Sun, Y., Li, Y., Zhang, Y., Shen, W., and Wei, X. (2023). Rumen Fermentation Parameters Prediction Model for Dairy Cows Using a Stacking Ensemble Learning Method. Animals, 13. 5. Li, Y., Lv, J., Wang, J., Zhou, S., Zhang, G., Wei, B., Sun, Y., Lan, Y., Dou, X., and Zhang, Y. (2021). Changes in Carbohydrate Composition in Fermented Total Mixed Ration and Its Effects on in vitro Methane Production and Microbiome. Front. Microbiol., 12.
|
|