A Highly Accurate, Polynomial-Based Digital Temperature Compensation for Piezoresistive Pressure Sensor in 180 nm CMOS Technology

Author:

Ali ImranORCID,Asif Muhammad,Shehzad Khuram,Rehman Muhammad Riaz Ur,Kim Dong Gyu,Rikan Behnam Samadpoor,Pu YoungGun,Yoo Sang SunORCID,Lee Kang-Yoon

Abstract

Recently, piezoresistive-type (PRT) pressure sensors have been gaining attention in variety of applications due to their simplicity, low cost, miniature size and ruggedness. The electrical behavior of a pressure sensor is highly dependent on the temperature gradient which seriously degrades its reliability and reduces measurement accuracy. In this paper, polynomial-based adaptive digital temperature compensation is presented for automotive piezoresistive pressure sensor applications. The non-linear temperature dependency of a pressure sensor is accurately compensated for by incorporating opposite characteristics of the pressure sensor as a function of temperature. The compensation polynomial is fully implemented in a digital system and a scaling technique is introduced to enhance its accuracy. The resource sharing technique is adopted for minimizing controller area and power consumption. The negative temperature coefficient (NTC) instead of proportional to absolute temperature (PTAT) or complementary to absolute temperature (CTAT) is used as the temperature-sensing element since it offers the best temperature characteristics for grade 0 ambient temperature operating range according to the automotive electronics council (AEC) test qualification ACE-Q100. The shared structure approach uses an existing analog signal conditioning path, composed of a programmable gain amplifier (PGA) and an analog-to-digital converter (ADC). For improving the accuracy over wide range of temperature, a high-resolution sigma-delta ADC is integrated. The measured temperature compensation accuracy is within ±0.068% with full scale when temperature varies from −40 °C to 150 °C according to ACE-Q100. It takes 37 µs to compute the temperature compensation with a clock frequency of 10 MHz. The proposed technique is integrated in an automotive pressure sensor signal conditioning chip using a 180 nm complementary metal–oxide–semiconductor (CMOS) process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Programmable CMOS Integrated pressure sensor;Czarnocki;SAE Trans.,1999

2. Pressure sensors in automotive applications and future challenges;Chiou;Proc. Micro-Electro-Mech. Syst. Symp. Asme Int. Mech. Eng. Congr. Expo.,1999

3. A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity

4. A Smart Thermal Environment Monitor Based on IEEE 1451.2 Standard for Global Networking

5. Failure Mechanism Based Stress Test Qualification for Integrated Circuits,2014

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3