Temperature Compensation Method for Piezoresistive Pressure Sensors Based on Gated Recurrent Unit

Author:

Liu Mian1ORCID,Wang Zhiwu1,Jiang Pingping1ORCID,Yan Guozheng2

Affiliation:

1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Piezoresistive pressure sensors have broad applications but often face accuracy challenges due to temperature-induced drift. Traditional compensation methods based on discrete data, such as polynomial interpolation, support vector machine (SVM), and artificial neural network (ANN), overlook the thermal hysteresis, resulting in lower accuracy. Considering the sequence-dependent nature of temperature drift, we propose the RF-IWOA-GRU temperature compensation model. Random forest (RF) is used to interpolate missing values in continuous data. A combination of gated recurrent unit (GRU) networks and an improved whale optimization algorithm (IWOA) is employed for temperature compensation. This model leverages the memory capability of GRU and the optimization efficiency of the IWOA to enhance the accuracy and stability of the pressure sensors. To validate the compensation method, experiments were designed under continuous variations in temperature and actual pressure. The experimental results show that the compensation capability of the proposed RF-IWOA-GRU model significantly outperforms that of traditional methods. After compensation, the standard deviation of pressure decreased from 10.18 kPa to 1.14 kPa, and the mean absolute error and root mean squared error were reduced by 75.10% and 76.15%, respectively.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3