Deep Learning-Based Acoustic Emission Scheme for Nondestructive Localization of Cracks in Train Rails under a Load

Author:

Suwansin Wara,Phasukkit PattarapongORCID

Abstract

This research proposes a nondestructive single-sensor acoustic emission (AE) scheme for the detection and localization of cracks in steel rail under loads. In the operation, AE signals were captured by the AE sensor and converted into digital signal data by AE data acquisition module. The digital data were denoised to remove ambient and wheel/rail contact noises, and the denoised data were processed and classified to localize cracks in the steel rail using a deep learning algorithmic model. The AE signals of pencil lead break at the head, web, and foot of steel rail were used to train and test the algorithmic model. In training and testing the algorithm, the AE signals were divided into two groupings (150 and 300 AE signals) and the classification accuracy compared. The deep learning-based AE scheme was also implemented onsite to detect cracks in the steel rail. The total accuracy (average F1 score) under the first and second groupings were 86.6% and 96.6%, and that of the onsite experiment was 77.33%. The novelty of this research lies in the use of a single AE sensor and AE signal-based deep learning algorithm to efficiently detect and localize cracks in the steel rail, unlike existing AE crack-localization technology that relies on two or more sensors and human interpretation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3