WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing

Author:

Liu Ruozhu1,Wang Xingbing2,Kumar Anil2ORCID,Sun Bintao2,Zhou Yuqing2ORCID

Affiliation:

1. School of International Education, Jiaxing Nanyang Polytechnic Institute, Jiaxing 314000, China

2. College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China

Abstract

Rolling bearings are crucial mechanical components in the mechanical industry. Timely intervention and diagnosis of system faults are essential for reducing economic losses and ensuring product productivity. To further enhance the exploration of unlabeled time-series data and conduct a more comprehensive analysis of rolling bearing fault information, this paper proposes a fault diagnosis technique for rolling bearings based on graph node-level fault information extracted from 1D vibration signals. In this technique, 10 categories of 1D vibration signals from rolling bearings are sampled using a sliding window approach. The sampled data is then subjected to wavelet packet decomposition (WPD), and the wavelet energy from the final layer of the four-level WPD decomposition in each frequency band is used as the node feature. The weights of edges between nodes are calculated using the Pearson correlation coefficient (PCC) to construct a node graph that describes the feature information of rolling bearings under different health conditions. Data augmentation of the node graph in the dataset is performed by randomly adding nodes and edges. The graph convolutional neural network (GCN) is employed to encode the augmented node graph representation, and deep graph contrastive learning (DGCL) is utilized for the pre-training and classification of the node graph. Experimental results demonstrate that this method outperforms contrastive learning-based fault diagnosis methods for rolling bearings and enables rapid fault diagnosis, thus ensuring the normal operation of mechanical systems. The proposed WPDPCC-DGCL method offers two advantages: (1) the flexibility of wavelet packet decomposition in handling non-smooth vibration signals and combining it with the powerful multi-scale feature encoding capability of GCN for richer characterization of fault information, and (2) the construction of graph node-level fault samples to effectively capture underlying fault information. The experimental results demonstrate the superiority of this method in rolling bearing fault diagnosis over contrastive learning-based approaches, enabling fast and accurate fault diagnoses for rolling bearings and ensuring the normal operation of mechanical systems.

Funder

Science and Technology Plan Project of Jiaxing

Science and Technology Plan Project of Wenzhou

Research Project of Jiaxing Nanhu University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3