Enhancing Fault Diagnosis in Mechanical Systems with Graph Neural Networks Addressing Class Imbalance

Author:

Lu Wenhao12,Wang Wei1ORCID,Qin Xuefei1,Cai Zhiqiang1ORCID

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. Department of Automotive Engineering, Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, China

Abstract

Recent advancements in intelligent diagnosis rely heavily on data-driven methods. However, these methods often encounter challenges in adequately addressing class imbalances in the context of the fault diagnosis of mechanical systems. This paper proposes the MeanRadius-SMOTE graph neural network (MRS-GNN), a novel framework designed to synthesize node representations in GNNs to effectively mitigate this issue. Through integrating the MeanRadius-SMOTE oversampling technique into the GNN architecture, the MRS-GNN demonstrates an enhanced capability to learn from under-represented classes while preserving the intrinsic connectivity patterns of the graph data. Comprehensive testing on various datasets demonstrates the superiority of the MRS-GNN over traditional methods in terms of classification accuracy and handling class imbalances. The experimental results on three publicly available fault diagnosis datasets show that the MRS-GNN improves the classification accuracy by 18 percentage points compared to some popular methods. Furthermore, the MRS-GNN exhibits a higher robustness in extreme imbalance scenarios, achieving an AUC-ROC value of 0.904 when the imbalance rate is 0.4. This framework not only enhances the fault diagnosis accuracy but also offers a scalable solution applicable to diverse mechanical and complex systems, demonstrating its utility and adaptability in various operating environments and fault conditions.

Funder

National Natural Science Foundation of China

Distinguished Young Scholar Program of Shaanxi Province

Natural Science Basic Research Program of Shaanxi Province

Science and Technology Innovation Team of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3