Curaua–Aramid Hybrid Laminated Composites for Impact Applications: Flexural, Charpy Impact and Elastic Properties

Author:

Meliande Natalin MicheleORCID,Oliveira Michelle SouzaORCID,Silveira Pedro Henrique Poubel Mendonça daORCID,Dias Rafael RodriguesORCID,Marçal Rubens Lincoln Santana BlazuttiORCID,Monteiro Sergio NevesORCID,Nascimento Lucio Fabio CassianoORCID

Abstract

Curaua, as a leaf-based natural fiber, appears to be a promising component with aramid fabric reinforcement of hybrid composites. This work deals with the investigation of flexural, impact and elastic properties of non-woven curaua–aramid fabric hybrid epoxy composites. Five configurations of hybrid composites in a curaua non-woven mat with an increasing quantity of layers, up to four layers, were laminated through the conventional hand lay-up method. The proposed configurations were idealized with at least 60 wt% reinforcement in the non-alternating configuration. As a result, it was observed that the flexural strength decreased by 33% and the flexural modulus by 56%. In addition, the energy absorbed in the Charpy impact also decreased in the same proportion as the replaced amount of aramid. Through the impulse excitation technique, it was possible observe that the replacement of the aramid layers with the curaua layers resulted in decreased elastic properties. However, reduction maps revealed proportional advantages in hybridizing the curaua with the aramid fiber. Moreover, the hybrid composite produced an almost continuous and homogeneous material, reducing the possibility of delamination and transverse deformation, which revealed an impact-resistant performance.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3