Abstract
AbstractDespite of the fact that more and more accessory devices are integrated to functionalize a ballistic helmet system, its core ballistic protective function needs to be improved with weight reduction was and still is the main course in engineering design. The two major generic classes of synthetic fibres for ballistic composites are Ultra High Molecular Weight Polyethylene (UHMWPE) fibre (0.97 g/cm3) and aramid fibre (1.44 g/cm3). In the area of military helmets, these fibres are constructed into different topologies, draping/forming into double-curvature geometric shape in multiple plies, serving as reinforcement for composite shell. The preforming ways influence the subsequent impregnation / solidification and curing step in manufacture, in terms of the fibre orientation and fibre volume fraction. The inherent structural heterogeneity thus leads to scatter in permeability and composite thickness, and have further impact in generating process-induced defects. During the processing, the fibre continuity without wrinkles, together with voids-free are determinative factors to a quality final part. The aim of this paper is to review the manufacturing technologies characterised by thermo-mechanical forming and Liquid Composite Moulding (LCM), relating their processing parameters respectively to the properties of reinforcements in one dimension (1D), two dimensions (2D) and three dimensions (3D), along with that of the matrix in dry or wet phase, interdependency of them are sought.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献