Explainable Data-Driven Ensemble Learning Models for the Mechanical Properties Prediction of Concrete Confined by Aramid Fiber-Reinforced Polymer Wraps Using Generative Adversarial Networks

Author:

Cakiroglu Celal1ORCID

Affiliation:

1. Department of Civil Engineering, Turkish-German University, Istanbul 34820, Turkey

Abstract

The current study offers a data-driven methodology to predict the ultimate strain and compressive strength of concrete reinforced by aramid FRP wraps. An experimental database was collected from the literature, on which seven different machine learning (ML) models were trained. The diameter and length of the cylindrical specimens, the compressive strength of unconfined concrete, the thickness, elasticity modulus and ultimate tensile strength of the FRP wrap were used as the input features of the machine learning models, to predict the ultimate strength and strain of the specimens. The experimental dataset was further enhanced with synthetic data using the tabular generative adversarial network (TGAN) approach. The machine learning models’ performances were compared to the predictions of the existing strain capacity and compressive strength prediction equations for aramid FRP-confined concrete. The accuracy of the predictive models was measured using state-of-the-art statistical metrics such as the coefficient of determination, mean absolute error and root mean squared error. On average, the machine learning models were found to perform better than the available equations in the literature. In particular, the extra trees regressor, XGBoost and K-nearest neighbors algorithms performed significantly better than the remaining algorithms, with R2 scores greater than 0.98. Furthermore, the SHapley Additive exPlanations (SHAP) method and individual conditional expectation (ICE) plots were used to visualize the effects of various input parameters on the predicted ultimate strain and strength values. The unconfined compressive strength of concrete and the ultimate tensile strength of the FRP wrap were found to have the greatest impact on the machine learning model outputs.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3