Computationally Efficient Concept of Representative Directions for Anisotropic Fibrous Materials

Author:

Shutov AlexeyORCID,Rodionov Alexander,Ponomarev Dmitri,Nekrasova Yana

Abstract

The concept of representative directions allows for automatic generation of multi-axial constitutive equations, starting from simplified uni-axial material models. In this paper, a modification of the concept is considered suitable for the analysis of fibrous polymeric materials, which are anisotropic in the as-received state. The modification of the concept incorporates an orientation probability density function (OPDF), which explicitly accounts for the material anisotropy. Two versions of the concept are available. The first version utilizes the homogeneous distribution of the representative directions, with the entire anisotropy being contained in the weighting factors. The second encapsulates the anisotropy in the distribution of the representative directions. Due to its nature, the second version allows for a more efficient use of computational power. To promote this efficient version of the concept, we present new algorithms generating required sets of representative directions that match a given OPDF. These methods are based (i) on the minimization of a potential energy, (ii) on the equilibration method, and (iii) on the use of Voronoi cells. These three methods are tested and compared in terms of various OPDFs. The applicability of the computationally efficient modeling method to mechanical behavior of an anisotropic polymeric material is demonstrated. In particular, a calibration procedure is suggested for the practically important case when the OPDF is not known a-priori.

Funder

Ministry of Science and Higer Education of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3