A Trunk Detection Method for Camellia oleifera Fruit Harvesting Robot Based on Improved YOLOv7

Author:

Liu Yang12,Wang Haorui1,Liu Yinhui3,Luo Yuanyin1,Li Haiying1,Chen Haifei1,Liao Kai1,Li Lijun1

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China

2. Hunan Automotive Engineering Vocational College, Zhuzhou 412001, China

3. Zhongqing Changtai (Changsha) Intelligent Technology Co., Ltd., Changsha 410116, China

Abstract

Trunk recognition is a critical technology for Camellia oleifera fruit harvesting robots, as it enables accurate and efficient detection and localization of vibration or picking points in unstructured natural environments. Traditional trunk detection methods heavily rely on the visual judgment of robot operators, resulting in significant errors and incorrect vibration point identification. In this paper, we propose a new method based on an improved YOLOv7 network for Camellia oleifera trunk detection. Firstly, we integrate an attention mechanism into the backbone and head layers of YOLOv7, enhancing feature extraction for trunks and enabling the network to focus on relevant target objects. Secondly, we design a weighted confidence loss function based on Facol-EIoU to replace the original loss function in the improved YOLOv7 network. This modification aims to enhance the detection performance specifically for Camellia oleifera trunks. Finally, trunk detection experiments and comparative analyses were conducted with YOLOv3, YOLOv4, YOLOv5, YOLOv7 and improved YOLOv7 models. The experimental results demonstrate that our proposed method achieves an mAP of 89.2%, Recall Rate of 0.94, F1 score of 0.87 and Average Detection Speed of 0.018s/pic that surpass those of YOLOv3, YOLOv4, YOLOv5 and YOLOv7 models. The improved YOLOv7 model exhibits excellent trunk detection accuracy, enabling Camellia oleifera fruit harvesting robots to effectively detect trunks in unstructured orchards.

Funder

National Key Research and Development Program

Central South University of Forestry and Technology

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3