YOLO-CFruit: a robust object detection method for Camellia oleifera fruit in complex environments

Author:

Luo Yuanyin,Liu Yang,Wang Haorui,Chen Haifei,Liao Kai,Li Lijun

Abstract

IntroductionIn the field of agriculture, automated harvesting of Camellia oleifera fruit has become an important research area. However, accurately detecting Camellia oleifera fruit in a natural environment is a challenging task. The task of accurately detecting Camellia oleifera fruit in natural environments is complex due to factors such as shadows, which can impede the performance of traditional detection techniques, highlighting the need for more robust methods.MethodsTo overcome these challenges, we propose an efficient deep learning method called YOLO-CFruit, which is specifically designed to accurately detect Camellia oleifera fruits in challenging natural environments. First, we collected images of Camellia oleifera fruits and created a dataset, and then used a data enhancement method to further enhance the diversity of the dataset. Our YOLO-CFruit model combines a CBAM module for identifying regions of interest in landscapes with Camellia oleifera fruit and a CSP module with Transformer for capturing global information. In addition, we improve YOLOCFruit by replacing the CIoU Loss with the EIoU Loss in the original YOLOv5.ResultsBy testing the training network, we find that the method performs well, achieving an average precision of 98.2%, a recall of 94.5%, an accuracy of 98%, an F1 score of 96.2, and a frame rate of 19.02 ms. The experimental results show that our method improves the average precision by 1.2% and achieves the highest accuracy and higher F1 score among all state-of-the-art networks compared to the conventional YOLOv5s network.DiscussionThe robust performance of YOLO-CFruit under different real-world conditions, including different light and shading scenarios, signifies its high reliability and lays a solid foundation for the development of automated picking devices.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3