Ship Detection via Dilated Rate Search and Attention-Guided Feature Representation

Author:

Hu JianmingORCID,Zhi XiyangORCID,Shi Tianjun,Yu LijianORCID,Zhang Wei

Abstract

Due to the complexity of scene interference and the variability of ship scale and position, automatic ship detection in remote sensing images makes for challenging research. The existing deep networks rarely design receptive fields that fit the target scale based on training data. Moreover, most of them ignore the effective retention of position information in the feature extraction process, which reduces the contribution of features to subsequent classification. To overcome these limitations, we propose a novel ship detection framework combining the dilated rate selection and attention-guided feature representation strategies, which can efficiently detect ships of different scales under the interference of complex environments such as clouds, sea clutter and mist. Specifically, we present a dilated convolution parameter search strategy to adaptively select the dilated rate for the multi-branch extraction architecture, adaptively obtaining context information of different receptive fields without sacrificing the image resolution. Moreover, to enhance the spatial position information of the feature maps, we calculate the correlation of spatial points from the vertical and horizontal directions and embed it into the channel compression coding process, thus generating the multi-dimensional feature descriptors which are sensitive to direction and position characteristics of ships. Experimental results on the Airbus dataset demonstrate that the proposed method achieves state-of-the-art performance compared with other detection models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3