A Deep Learning Method for Ship Detection and Traffic Monitoring in an Offshore Wind Farm Area

Author:

Liu Xintong1ORCID,Hu Yutian1ORCID,Ji Huiting1,Zhang Mingyang2ORCID,Yu Qing13ORCID

Affiliation:

1. Maritime Risk & Behavioral Sciences Lab, School of Navigation, Jimei University, Xiamen 361021, China

2. Marine Technology Group, Department of Mechanical Engineering, Aalto University, 00076 Espoo, FI, Finland

3. Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, Wuhan 430063, China

Abstract

Newly built offshore wind farms (OWFs) create a collision risk between ships and installations. The paper proposes a real-time traffic monitoring method based on machine vision and deep learning technology to improve the efficiency and accuracy of the traffic monitoring system in the vicinity of offshore wind farms. Specifically, the method employs real automatic identification system (AIS) data to train a machine vision model, which is then used to identify passing ships in OWF waters. Furthermore, the system utilizes stereo vision techniques to track and locate the positions of passing ships. The method was tested in offshore waters in China to validate its reliability. The results prove that the system sensitively detects the dynamic information of the passing ships, such as the distance between ships and OWFs, and ship speed and course. Overall, this study provides a novel approach to enhancing the safety of OWFs, which is increasingly important as the number of such installations continues to grow. By employing advanced machine vision and deep learning techniques, the proposed monitoring system offers an effective means of improving the accuracy and efficiency of ship monitoring in challenging offshore environments.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Hubei Key Laboratory of Inland Shipping Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3