A Novel Method of Ship Detection under Cloud Interference for Optical Remote Sensing Images

Author:

Wang Wensheng,Zhang Xinbo,Sun Wu,Huang Min

Abstract

In this paper, we propose a novel method developed for detecting incomplete ship targets under cloud interference and low-contrast ship targets in thin fog based on superpixel segmentation, and outline its application to optical remote sensing images. The detection of ship targets often requires the target to be complete, and the overall features of the ship are used for detection and recognition. When the ship target is obscured by clouds, or the contrast between the ship target and the sea-clutter background is low, there may be incomplete targets, which reduce the effectiveness of recognition. Here, we propose a new method combining constant false alarm rate (CFAR) and superpixel segmentation with feature points (SFCFAR) to solve the above problems. Our newly developed SFCFAR utilizes superpixel segmentation to divide large scenes into many small regions which include target regions and background regions. In remote sensing images, the target occupies a small proportion of pixels in the entire image. In our method, we use superpixel segmentation to divide remote sensing images into meaningful blocks. The target regions are identified using the characteristics of clusters of ship texture features and the texture differences between the target and background regions. This step not only detects the ship target quickly, but also detects ships with low contrast and under cloud cover. In optical remote sensing, ships at sea under thin clouds are not common in practice, and the sample size generated is relatively small, so this problem is not applicable to deep learning algorithms for training, while the SFCFAR algorithm does not require data training to complete the detection task. Experiments show that the proposed SFCFAR algorithm enhances the detection of obscured ship targets under clouds and low-contrast targets in thin fog, compared with traditional target detection methods and as deep learning algorithms, further complementing existing ship detection methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3