A Novel Cargo Ship Detection and Directional Discrimination Method for Remote Sensing Image Based on Lightweight Network

Author:

Wang Pan,Liu Jianzhong,Zhang Yinbao,Zhi Zhiyang,Cai Zhijian,Song Nannan

Abstract

Recently, cargo ship detection in remote sensing images based on deep learning is of great significance for cargo ship monitoring. However, the existing detection network is not only unable to realize autonomous operation on spaceborne platforms due to the limitation of computing and storage, but the detection result also lacks the directional information of the cargo ship. In order to address the above problems, we propose a novel cargo ship detection and directional discrimination method for remote sensing images based on a lightweight network. Specifically, we design an efficient and lightweight feature extraction network called the one-shot aggregation and depthwise separable network (OSADSNet), which is inspired by one-shot feature aggregation modules and depthwise separable convolutions. Additionally, we combine the RPN with the K-Mean++ algorithm to obtain the K-RPN, which can produce a more suitable region proposal for cargo ship detection. Furthermore, without introducing extra parameters, the directional discrimination of the cargo ship is transformed into a classification task, and the directional discrimination is completed when the detection task is completed. Experiments on a self-built remote sensing image cargo ship dataset indicate that our model can provide relatively accurate and fast detection for cargo ships (mAP of 91.96% and prediction time of 46 ms per image) and discriminate the directions (north, east, south, and west) of cargo ships, with fewer parameters (model size of 110 MB), which is more suitable for autonomous operation on spaceborne platforms. Therefore, the proposed method can meet the needs of cargo ship detection and directional discrimination in remote sensing images on spaceborne platforms.

Funder

High-level talent research of Zhengzhou University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3