Glacier Facies Mapping Using a Machine-Learning Algorithm: The Parlung Zangbo Basin Case Study

Author:

Zhang Jingxiao,Jia Li,Menenti Massimo,Hu GuangchengORCID

Abstract

Glaciers in the Tibetan Plateau are an important indicator of climate change. Automatic glacier facies mapping utilizing remote sensing data is challenging due to the spectral similarity of supraglacial debris and the adjacent bedrock. Most of the available glacier datasets do not provide the boundary of clean ice and debris-covered glacier facies, while debris-covered glacier facies play a key role in mass balance research. The aim of this study was to develop an automatic algorithm to distinguish ice cover types based on multi-temporal satellite data, and the algorithm was implemented in a subregion of the Parlung Zangbo basin in the southeastern Tibetan Plateau. The classification method was built upon an automated machine learning approach: Random Forest in combination with the analysis of topographic and textural features based on Landsat-8 imagery and multiple digital elevation model (DEM) data. Very high spatial resolution Gao Fen-1 (GF-1) Panchromatic and Multi-Spectral (PMS) imagery was used to select training samples and validate the classification results. In this study, all of the land cover types were classified with overall good performance using the proposed method. The results indicated that fully debris-covered glaciers accounted for approximately 20.7% of the total glacier area in this region and were mainly distributed at elevations between 4600 m and 4800 m above sea level (a.s.l.). Additionally, an analysis of the results clearly revealed that the proportion of small size glaciers (<1 km2) were 88.3% distributed at lower elevations compared to larger size glaciers (≥1 km2). In addition, the majority of glaciers (both in terms of glacier number and area) were characterized by a mean slope ranging between 20° and 30°, and 42.1% of glaciers had a northeast and north orientation in the Parlung Zangbo basin.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3