Differentiation between Weissella cibaria and Weissella confusa Using Machine-Learning-Combined MALDI-TOF MS

Author:

Kim Eiseul12ORCID,Yang Seung-Min12,Jung Dae-Hyun13,Kim Hae-Yeong12ORCID

Affiliation:

1. Institute of Life Sciences and Resources, Yongin 17104, Republic of Korea

2. Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea

3. Department of Smart Farm Science, Kyung Hee University, Yongin 17104, Republic of Korea

Abstract

Although Weissella cibaria and W. confusa are essential food-fermenting bacteria, they are also opportunistic pathogens. Despite these species being commercially crucial, their taxonomy is still based on inaccurate identification methods. In this study, we present a novel approach for identifying two important Weissella species, W. cibaria and W. confusa, by combining matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer (MALDI-TOF MS) data using machine-learning techniques. After on- and off-plate protein extraction, we observed that the BioTyper database misidentified or could not differentiate Weissella species. Although Weissella species exhibited very similar protein profiles, these species can be differentiated on the basis of the results of a statistical analysis. To classify W. cibaria, W. confusa, and non-target Weissella species, machine learning was used for 167 spectra, which led to the listing of potential species-specific mass-to-charge (m/z) loci. Machine-learning techniques including artificial neural networks, principal component analysis combined with the K-nearest neighbor, support vector machine (SVM), and random forest were used. The model that applied the Radial Basis Function kernel algorithm in SVM achieved classification accuracy of 1.0 for training and test sets. The combination of MALDI-TOF MS and machine learning can efficiently classify closely-related species, enabling accurate microbial identification.

Funder

Rural Development Administration, Republic of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3