Deep learning-based phenotype classification of three ark shells: Anadara kagoshimensis, Tegillarca granosa, and Anadara broughtonii

Author:

Kim Eiseul,Yang Seung-Min,Cha Jae-Eun,Jung Dae-Hyun,Kim Hae-Yeong

Abstract

The rapid and accurate classification of aquatic products is crucial for ensuring food safety, production efficiency, and economic benefits. However, traditional manual methods for classifying ark shell species based on phenotype are time-consuming and inefficient, especially during peak seasons when the demand is high and labor is scarce. This study aimed to develop a deep learning model for the automated identification and classification of commercially important three ark shells (Tegillarca granosa, Anadara broughtonii, and Anadara kagoshimensis) from images. The ark shells were collected and identified using a polymerase chain reaction method developed in a previous study, and a total of 1,400 images were categorized into three species. Three convolutional neural network (CNN) models, Visual Geometry Group Network (VGGnet), Inception-Residual Network (ResNet), and SqueezeNet, were then applied to two different classification sets, Set-1 (four bivalve species) and Set-2 (three ark shell species). Our results showed that SqueezeNet demonstrated the highest accuracy during the training phase for both classification sets, whereas Inception-ResNet exhibited superior accuracy during the validation phase. Similar results were obtained after developing a third classification set (Set-3) to classify six categories by combining Set-1 and Set-2. Overall, the developed CNN-based classification model exhibited a performance comparable or superior to that presented in previous studies and can provide a theoretical basis for bivalve classification, thereby contributing to improved food safety, production efficiency, and economic benefits in the aquatic products industry.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3