Photon- and Singlet-Oxygen-Induced Cis–Trans Isomerization of the Water-Soluble Carotenoid Crocin

Author:

Fusi Franco1ORCID,Romano Giovanni1,Speranza Giovanna2ORCID,Agati Giovanni3ORCID

Affiliation:

1. Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G. Pieraccini, 6, 50139 Florence, Italy

2. Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy

3. “Nello Carrara” Institute of Applied Physics (IFAC), National Research Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

Abstract

Studying the cis–trans isomerization process in crocin (CR), one of the few water-soluble carotenoids extracted from saffron, is important to better understand the physiological role of cis-carotenoids in vivo and their potential as antioxidants in therapeutic applications. For that, cis–trans isomerization of both methanol- and water-dissolved CR was induced by light or thermally generated singlet oxygen (1O2). The kinetics of molecular concentrations were monitored by both high-performance liquid chromatography (HPLC) and non-destructive spectrophotometric methods. These last made it possible to simultaneously follow the cis–trans isomerization, the possible bleaching of compounds and the amount of thermally generated 1O2. Our results were in accordance with a comprehensive model where the cis–trans isomerization occurs as relaxation from the triplet state of all-trans- or 13-cis-CR, whatever is the way to populate the CR triplet state, either by photon or 1O2 energy transfer. The process is much more (1.9 to 10-fold) efficient from cis to trans than vice versa. In H2O, a 1O2-induced bleaching effect on the starting CR was not negligible. However, the CR “flip-flop” isomerization reaction could still occur, suggesting that this process can represent an efficient mechanism for quenching of reactive oxygen species (ROS) in vivo, with a limited need of carotenoid regeneration.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3