Joining with Reactive Nano-Multilayers: Influence of Thermal Properties of Components on Joint Microstructure and Mechanical Performance

Author:

Rheingans Bastian,Spies Irina,Schumacher Axel,Knappmann Stephan,Furrer Roman,Jeurgens Lars,Janczak-Rusch JolantaORCID

Abstract

Reactive nano-multilayers (RNMLs), which are able to undergo a self-heating exothermal reaction, can, e.g., be utilised as a local heat source for soldering or brazing. Upon joining with RNMLs, the heat produced by the exothermal reaction must be carefully adjusted to the joining system in order to provide sufficient heat for bond formation while avoiding damaging of the joining components by excessive heat. This heat balance strongly depends on the thermal properties of the joining components: a low thermal conductivity leads to heat concentration within the joining zone adjacent to the RNML, while a high thermal conductivity leads to fast heat dissipation into the components. The quality of the joint is thus co-determined by the thermal properties of the joining components. This work provides a systematic study on the influence of the thermal properties upon reactive joining for a set of substrate materials with thermal conductivities ranging from very low to very high. In particular, the evolution of the microstructure within the joining zone as a function of the specific time-temperature-profile for the given component material is investigated, focusing on the interaction between solder, RNML foil and surface metallisations, and the associated formation of intermetallic phases. Finally, the specific microstructure of the joints is related to their mechanical performance upon shear testing, and suggestions for optimum joint design are provided.

Funder

Interreg

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3