Experimental‐Assisted Approach to Develop a Numerical Model for Simulating the Reaction Propagation in Reactive Multilayers

Author:

Daneshpazhoonejad Farshad1ORCID,Glaser Marcus2,Hildebrand Jörg2,Bergmann Jean Pierre2,Jung Anne1ORCID

Affiliation:

1. Protective Systems Helmut‐Schmidt‐University/University of the Federal Armed Forces Hamburg 22043 Hamburg Germany

2. Production Technology Group Technische Universität Ilmenau 98693 Ilmenau Germany

Abstract

One outstanding feature of self‐propagating reactions is their ability to release heat of reaction over both temporal and spatial scales, enabling the sustained progression of the reaction after a local ignition. They propagate in the form of a continuous reaction front through the mixture of the starting materials. Previous research on reactive materials has predominantly focused on unraveling the microstructure property relationships influencing released energy in reacting multilayers. This involved considering coupled differential equations, including the heat conduction equation and Fick's law. In this study, the introduction of a purely thermal numerical macroscale model is made, incorporating two states of material properties that differentiate between the thermal characteristics before and after phase formation. The homogenization of material properties before the phase formation is accomplished through the consideration of directional‐temperature‐dependent thermal conductivity and temperature‐dependent‐specific heat capacity. The energy‐release function is derived using experimental data for the reaction velocity depending on bilayer thickness. This model allows for the exploration of reaction motion and temperature profiles, achieving qualitative conformity with experimental measurements for freestanding foil, and necessitating reasonable computational effort.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3