Influence of Metal Surface Structures on Composite Formation during Polymer–Metal Joining Based on Reactive Al/Ni Multilayer Foil

Author:

Glaser Marcus1ORCID,Ehlich Kai1,Matthes Sebastian2,Hildebrand Jörg1,Schaaf Peter2,Bergmann Jean Pierre1

Affiliation:

1. Production Technology Group Department of Mechanical Engineering Institute of Micro and Nanotechnology MacroNano Technische Universität Ilmenau Ilmenau 98693 Germany

2. Chair Materials for Electrical Engineering and Electronics Department of Electrical Engineering and Information Technology Institute of Materials Science & Technology Institute of Micro and Nanotechnologies MacroNano Technische Universität Ilmenau Ilmenau 98693 Germany

Abstract

Progressive developments in the field of lightweight construction and engineering demand continuous substitution of metals with suitable polymers. However, the combination of dissimilar materials results in a multitude of challenges based on different chemical and physical material properties. Reactive multilayer systems offer a promising joining method for flexible and low‐distortion joining of dissimilar joining partners with an energy source introduced directly into the joining zone. Within this publication, hybrid lap joints between semicrystalline polyamide 6 and surface‐structured austenitic steel X5CrNi18–10 (EN 1.4301) are joined using reactive Al/Ni multilayer foils of the type Indium–NanoFoil. The main objective is to examine possibilities of influencing crack initiation in the foil plane by variation of joining pressure and different metal surface structures with regard to geometry, density, and orientation. Thus, the position of foil cracks is superimposed onto the metal structure and associated filling with molten plastic is improved. Consequently, characterization of occurring crack positions as a function of joining pressure and metal structure, analysis of the composite in terms of structural filling and joint strength, as well as possible causes of crack initiation are evaluated.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3