Abstract
The accuracy of the wearable inertia-measurement-unit (IMU)-sensor-based gesture recognition may be significantly affected by undesired changes in the body-fixed frame and the sensor-fixed frame according to the change in the subject and the sensor attachment. In this study, we proposed a novel wearable IMU-sensor-based hand-guiding gesture recognition method robust to significant changes in the subject’s body alignment based on the floating body-fixed frame method and the bi-directional long short-term memory (bi-LSTM). Through comparative experimental studies with the other two methods, it was confirmed that aligning the sensor-fixed frame with the reference frame of the human body and updating the reference frame according to the change in the subject’s body-heading direction helped improve the generalization performance of the gesture recognition model. As a result, the proposed floating body-fixed frame method showed a 91.7% test accuracy, confirming that it was appropriate for gesture recognition under significant changes in the subject’s body alignment during gestures.
Funder
National Research Foundation of Korea
Ministry of Science and ICT
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献