Affiliation:
1. Mechanical Engineering Department, Soongsil University, Seoul 06978, Republic of Korea
Abstract
Inertial Measurement Unit (IMU) sensor-based gait phase recognition is widely used in medical and biomechanics fields requiring gait data analysis. However, there are several limitations due to the low reproducibility of IMU sensor attachment and the sensor outputs relative to a fixed reference frame. The prediction algorithm may malfunction when the user changes their walking direction. In this paper, we propose a gait phase recognition method robust to user body movements based on a floating body-fixed frame (FBF) and bi-directional long short-term memory (bi-LSTM). Data from four IMU sensors attached to the shanks and feet on both legs of three subjects, collected via the FBF method, are processed through preprocessing and the sliding window label overlapping method before inputting into the bi-LSTM for training. To improve the model’s recognition accuracy, we selected parameters that influence both training and test accuracy. We conducted a sensitivity analysis using a level average analysis of the Taguchi method to identify the optimal combination of parameters. The model, trained with optimal parameters, was validated on a new subject, achieving a high test accuracy of 86.43%.
Funder
National Research Foundation of Korea
Institute of Information & communications Technology Planning & Evaluation
MSIT (Ministry of Science and ICT), Korea, under the Innovative Human Resource Development for Local Intellectualization support program
Korea Institute for Advancement of Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献