Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject’s Gait Progression Using Wearable Inertial Sensor

Author:

Jeon Haneul1ORCID,Lee Donghun1ORCID

Affiliation:

1. Mechanical Engineering Department, Soongsil University, Seoul 06978, Republic of Korea

Abstract

Inertial Measurement Unit (IMU) sensor-based gait phase recognition is widely used in medical and biomechanics fields requiring gait data analysis. However, there are several limitations due to the low reproducibility of IMU sensor attachment and the sensor outputs relative to a fixed reference frame. The prediction algorithm may malfunction when the user changes their walking direction. In this paper, we propose a gait phase recognition method robust to user body movements based on a floating body-fixed frame (FBF) and bi-directional long short-term memory (bi-LSTM). Data from four IMU sensors attached to the shanks and feet on both legs of three subjects, collected via the FBF method, are processed through preprocessing and the sliding window label overlapping method before inputting into the bi-LSTM for training. To improve the model’s recognition accuracy, we selected parameters that influence both training and test accuracy. We conducted a sensitivity analysis using a level average analysis of the Taguchi method to identify the optimal combination of parameters. The model, trained with optimal parameters, was validated on a new subject, achieving a high test accuracy of 86.43%.

Funder

National Research Foundation of Korea

Institute of Information & communications Technology Planning & Evaluation

MSIT (Ministry of Science and ICT), Korea, under the Innovative Human Resource Development for Local Intellectualization support program

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3