Comparative Transcriptome Profiling of Resistant and Susceptible Taxodium Trees in Responding to the Infection by Pestalotiopsis maculans

Author:

Zhang Fan,Xuan Lei,Chen Hong,Yu Chaoguang,Chong Xinran,Yin Yunlong,Lu Xiaoqing

Abstract

With the tolerance of flooding and strong winds, Taxodium has been widely recognized as an ecologically important tree in China. Red blight disease, caused by the fungal pathogen Pestalotiopsis maculans, is known as one of the most severe leaf diseases of Taxodium. However, limited information is available regarding the host plant defense response to this pathogen. To uncover the mechanism of the plant–pathogen interaction, we performed an essential comparative transcriptome analysis of the resistant species T. distichum and susceptible species T. mucronatum after P. maculans infection. A total of 50,763 unigenes were assembled, of which 34,651 unigenes were annotated in eight public databases. Differentially expressed gene (DEG) analysis identified 3420 and 4414 unigenes in response to infection in T. distichum and T. mucronatum, respectively. The transcriptome analysis exhibited differential expression patterns in the two species in response to the infection. Moreover, this study first found that, compared to susceptible T. mucronatum, T. distichum can effectively perceive the invasion of P. maculans and make a valid response through SA signal pathway. These data provided not only new insights into the resistance mechanisms in the highly resistant species but also promising genetic resources for improving the fungal pathogen tolerance in Taxodium breeding.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Open Fund of Jiangsu Key Laboratory for Research and Utilization of Plant Resources

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3