Comparative chloroplast genomics of the genus Taxodium

Author:

Duan Hao,Guo Jinbo,Xuan Lei,Wang Ziyang,Li Mingzhi,Yin Yunlong,Yang Ying

Abstract

Abstract Background Chloroplast (cp) genome information would facilitate the development and utilization of Taxodium resources. However, cp genome characteristics of Taxodium were poorly understood. Results We determined the complete cp genome sequences of T. distichum, T. mucronatum, and T. ascendens. The cp genomes are 131,947 bp to 132,613 bp in length, encode 120 genes with the same order, and lack typical inverted repeat (IR) regions. The longest small IR, a 282 bp trnQ-containing IR, were involved in the formation of isomers. Comparative analysis of the 3 cp genomes showed that 91.57% of the indels resulted in the periodic variation of tandem repeat (TR) motifs and 72.46% single nucleotide polymorphisms (SNPs) located closely to TRs, suggesting a relationship between TRs and mutational dynamics. Eleven hypervariable regions were identified as candidates for DNA barcode development. Hypothetical cp open reading frame 1(Ycf1) was the only one gene that has an indel in coding DNA sequence, and the indel is composed of a long TR. When extended to cupressophytes, ycf1 genes have undergone a universal insertion of TRs accompanied by extreme length expansion. Meanwhile, ycf1 also located in rearrangement endpoints of cupressophyte cp genomes. All these characteristics highlight the important role of repeats in the evolution of cp genomes. Conclusions This study added new evidence for the role of repeats in the dynamics mechanism of cp genome mutation and rearrangement. Moreover, the information of TRs and hypervariable regions would provide reliable molecular resources for future research focusing on the infrageneric taxa identification, phylogenetic resolution, population structure and biodiversity for the genus Taxodium and Cupressophytes.

Funder

National Natural Science Foundation of China

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources

Natural Science Foundation of Jiangsu Province

Biological Resources Service Network

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3