Can We Improve the Salinity Tolerance of Genotypes of Taxodium by Using Varietal and Hybrid Crosses?

Author:

Zhou Lijing,Creech David L.,Krauss Ken W.,Yunlong Yin,Kulhavy David L.

Abstract

Taxodium distichum (L.) Rich. var. distichum [baldcypress (BC)], Taxodium distichum var. mexicanum Gordon [Montezuma cypress (MC)], and a Taxodium hybrid (‘Nanjing Beauty’: BC × MC cross, T302) were evaluated for salt tolerance in 2006 at Nacogdoches, TX. Plants were irrigated weekly with four levels of salinity [0, 1, 3.5, and 6 ppt (0, 17, 60, and 102 mol·m−3)] for 13 weeks and then 0, 2, 7, and 12 ppt (0, 34, 120, and 204 mol·m−3) for another 12 weeks. Salinity treatments did not have a significant effect on growth rate; however, there were significant differences in growth rate among the three genotypes. Genotype T302 produced the greatest wet weight, whereas MC had stronger apical dominance and exhibited the greatest increase in height over the course of study. As expected, sodium (Na) concentration in Taxodium leaves increased as sea salt concentrations increased but did not tilt Na/potassium (K) ratios to stressful disproportions. Of the three genotypes, BC exhibited the highest leaf content of Na, calcium (Ca), sulfur (S), and iron (Fe); MC had the lowest leaf content of Na, Ca, S, and Fe; and T302 was intermediate. The benefits of using a hybrid cross (T302) that maintains greater biomass than BC or MC across a range of salinities must be weighed against the potential additional pruning and training necessary for cutting-grown clones relative to BC and MC propagated from seed and flood tolerance relative to BC. Still, combining the best characteristics of different varieties of T. distichum should facilitate the production of favorable genotypes tolerant to a number of soil physical and chemical property fluctuations for arboricultural operations.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3