Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery

Author:

Tzepkenlis Anastasios1,Marthoglou Konstantinos1,Grammalidis Nikos1ORCID

Affiliation:

1. Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece

Abstract

Nowadays, different machine learning approaches, either conventional or more advanced, use input from different remote sensing imagery for land cover classification and associated decision making. However, most approaches rely heavily on time-consuming tasks to gather accurate annotation data. Furthermore, downloading and pre-processing remote sensing imagery used to be a difficult and time-consuming task that discouraged policy makers to create and use new land cover maps. We argue that by combining recent improvements in deep learning with the use of powerful cloud computing platforms for EO data processing, specifically the Google Earth Engine, we can greatly facilitate the task of land cover classification. For this reason, we modify an efficient semantic segmentation approach (U-TAE) for a satellite image time series to use, as input, a single multiband image composite corresponding to a specific time range. Our motivation is threefold: (a) to improve land cover classification performance and at the same time reduce complexity by using, as input, satellite image composites with reduced noise created using temporal median instead of the original noisy (due to clouds, calibration errors, etc.) images, (b) to assess performance when using as input different combinations of satellite data, including Sentinel-2, Sentinel-1, spectral indices, and ALOS elevation data, and (c) to exploit channel attention instead of the temporal attention used in the original approach. We show that our proposed modification on U-TAE (mIoU: 57.25%) outperforms three other popular approaches, namely random forest (mIoU: 39.69%), U-Net (mIoU: 55.73%), and SegFormer (mIoU: 53.5%), while also using fewer training parameters. In addition, the evaluation reveals that proper selection of the input band combination is necessary for improved performance.

Funder

European Union and Greece

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3