Abstract
Deformable objects such as ropes, wires, and clothing are omnipresent in society and industry but are little researched in robotics research. This is due to the infinite amount of possible state configurations caused by the deformations of the deformable object. Engineered approaches try to cope with this by implementing highly complex operations in order to estimate the state of the deformable object. This complexity can be circumvented by utilizing learning-based approaches, such as reinforcement learning, which can deal with the intrinsic high-dimensional state space of deformable objects. However, the reward function in reinforcement learning needs to measure the state configuration of the highly deformable object. Vision-based reward functions are difficult to implement, given the high dimensionality of the state and complex dynamic behavior. In this work, we propose the consideration of concepts beyond vision and incorporate other modalities which can be extracted from deformable objects. By integrating tactile sensor cells into a textile piece, proprioceptive capabilities are gained that are valuable as they provide a reward function to a reinforcement learning agent. We demonstrate on a low-cost dual robotic arm setup that a physical agent can learn on a single CPU core to fold a rectangular patch of textile in the real world based on a learned reward function from tactile information.
Funder
Fonds Wetenschappelijk Onderzoek
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献