Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection

Author:

Levine Sergey1,Pastor Peter2,Krizhevsky Alex1,Ibarz Julian1,Quillen Deirdre1

Affiliation:

1. Google

2. X

Abstract

We describe a learning-based approach to hand-eye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images independent of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. We describe two large-scale experiments that we conducted on two separate robotic platforms. In the first experiment, about 800,000 grasp attempts were collected over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and gripper wear and tear. In the second experiment, we used a different robotic platform and 8 robots to collect a dataset consisting of over 900,000 grasp attempts. The second robotic platform was used to test transfer between robots, and the degree to which data from a different set of robots can be used to aid learning. Our experimental results demonstrate that our approach achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing. Our transfer experiment also illustrates that data from different robots can be combined to learn more reliable and effective grasping.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 1060 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3