Abstract
Due to the particularity of the jacket structure of offshore platforms and the complexity of the marine environment, there have been few effective localization and autonomous control methods for underwater robots that are designed for cleaning tasks. To improve this situation, a fusion bat algorithm (BA) online optimized fuzzy control method using vision localization was developed based on the constraints of the underwater operational environment. Vision localization was achieved based on images from a catadioptric panoramic imaging system. The features of the pipe edge and the boundary of the area covered by biofouling were obtained by image processing and feature extraction. The feature point chosen as the “highest” point of the boundary was calculated by projection transformation to generate the reference path. The specialized fuzzy controller was designed to drive the robot to track the reference path, and an improved bat algorithm with dynamic inertia weight and differential evolution method was developed to optimize the scale factors of the fuzzy controller online. The control method was simulated and further implemented on an underwater pipe-cleaning robot (UPCR), and the results indicate its rationality and validity.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献