Author:
Zhang Yuhui,Ji Yanjie,Yu Jiajie
Abstract
To solve the problem of low automatic number plate recognition (ANPR) data integrity and low completion accuracy of incomplete traffic data, which affects the quality and utilization of ANPR data, this paper proposed a model for estimating the travel time of the road link that considers the heterogeneity of the driving styles. The travel time of historical road sections in the road network was extracted from ANPR data. The driving crowd was clustered through density-based spatial clustering of applications with noise (DBSCAN) based on the time slot, the number of trips, and the travel time. To avoid the excessive data difference between different classes and the distortion of the complement data, the Lagrange interpolation method was adopted to complement the missing road link travel time within each cluster. Taking Ningbo city in China as an example, the travel time completion accuracies of the proposed method and the direct interpolation method were compared. The results show that the interpolation method considering the heterogeneity of driving styles is more sufficient to increase the completion accuracy by 37.4% compared with the direct interpolation manner. The comparison result verifies the effectiveness of the proposed method and can provide more reliable data support for the construction of the transportation system.
Funder
the National Key R&D Program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Techniques used in Automatic Number Plate Recognition;2023 4th International Conference for Emerging Technology (INCET);2023-05-26