Hourly Origin–Destination Matrix Estimation Using Intelligent Transportation Systems Data and Deep Learning

Author:

Afandizadeh Zargari ShahriarORCID,Memarnejad AmirmasoudORCID,Mirzahossein HamidORCID

Abstract

Predicting the travel demand plays an indispensable role in urban transportation planning. Data collection methods for estimating the origin–destination (OD) demand matrix are being extensively shifted from traditional survey techniques to the pre-collected data from intelligent transportation systems (ITSs). This shift is partly due to the high cost of conducting traditional surveys and partly due to the diversity of scattered data produced by ITSs and the opportunity to derive extra benefits out of this big data. This study attempts to predict the OD matrix of Tehran metropolis using a set of ITS data, including the data extracted from automatic number plate recognition (ANPR) cameras, smart fare cards, loop detectors at intersections, global positioning systems (GPS) of navigation software, socio-economic and demographic characteristics as well as land-use features of zones. For this purpose, five models based on machine learning (ML) techniques are developed for training and test. In evaluating the performance of the models, the statistical methods show that the convolutional neural network (CNN) leads to the best performance in terms of accuracy in predicting the OD matrix and has the lowest error in terms of root mean square error (RMSE) and mean absolute percentage error (MAPE). Moreover, the predicted OD matrix was structurally compared with the ground truth matrix, and the CNN model also shows the highest structural similarity with the ground truth OD matrix in the presented case.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3