Abstract
Technologies and services towards smart-vehicles and Intelligent-Transportation-Systems (ITS), continues to revolutionize many aspects of human life. This paper presents a detailed survey of current techniques and advancements in Automatic-Number-Plate-Recognition (ANPR) systems, with a comprehensive performance comparison of various real-time tested and simulated algorithms, including those involving computer vision (CV). ANPR technology has the ability to detect and recognize vehicles by their number-plates using recognition techniques. Even with the best algorithms, a successful ANPR system deployment may require additional hardware to maximize its accuracy. The number plate condition, non-standardized formats, complex scenes, camera quality, camera mount position, tolerance to distortion, motion-blur, contrast problems, reflections, processing and memory limitations, environmental conditions, indoor/outdoor or day/night shots, software-tools or other hardware-based constraint may undermine its performance. This inconsistency, challenging environments and other complexities make ANPR an interesting field for researchers. The Internet-of-Things is beginning to shape future of many industries and is paving new ways for ITS. ANPR can be well utilized by integrating with RFID-systems, GPS, Android platforms and other similar technologies. Deep-Learning techniques are widely utilized in CV field for better detection rates. This research aims to advance the state-of-knowledge in ITS (ANPR) built on CV algorithms; by citing relevant prior work, analyzing and presenting a survey of extraction, segmentation and recognition techniques whilst providing guidelines on future trends in this area.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献