Enhancing automated vehicle identification by integrating YOLO v8 and OCR techniques for high-precision license plate detection and recognition

Author:

Moussaoui Hanae,Akkad Nabil El,Benslimane Mohamed,El-Shafai Walid,Baihan Abdullah,Hewage Chaminda,Rathore Rajkumar Singh

Abstract

AbstractVehicle identification systems are vital components that enable many aspects of contemporary life, such as safety, trade, transit, and law enforcement. They improve community and individual well-being by increasing vehicle management, security, and transparency. These tasks entail locating and extracting license plates from images or video frames using computer vision and machine learning techniques, followed by recognizing the letters or digits on the plates. This paper proposes a new license plate detection and recognition method based on the deep learning YOLO v8 method, image processing techniques, and the OCR technique for text recognition. For this, the first step was the dataset creation, when gathering 270 images from the internet. Afterward, CVAT (Computer Vision Annotation Tool) was used to annotate the dataset, which is an open-source software platform made to make computer vision tasks easier to annotate and label images and videos. Subsequently, the newly released Yolo version, the Yolo v8, has been employed to detect the number plate area in the input image. Subsequently, after extracting the plate the k-means clustering algorithm, the thresholding techniques, and the opening morphological operation were used to enhance the image and make the characters in the license plate clearer before using OCR. The next step in this process is using the OCR technique to extract the characters. Eventually, a text file containing only the character reflecting the vehicle's country is generated. To ameliorate the efficiency of the proposed approach, several metrics were employed, namely precision, recall, F1-Score, and CLA. In addition, a comparison of the proposed method with existing techniques in the literature has been given. The suggested method obtained convincing results in both detection as well as recognition by obtaining an accuracy of 99% in detection and 98% in character recognition.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3