Author:
Zhan ,Wang ,Liu ,Xia ,Huang ,Li ,Liu ,Xu
Abstract
Automatic colorless floating hazardous and noxious substances (HNS) spill segmentation is an emerging research topic. Xylene is one of the priority HNSs since it poses a high risk of being involved in an HNS incident. This paper presents a novel algorithm for the target enhancement of xylene spills and their segmentation in ultraviolet (UV) images. To improve the contrast between targets and backgrounds (waves, sun reflections, and shadows), we developed a global background suppression (GBS) method to remove the irrelevant objects from the background, which is followed by an adaptive target enhancement (ATE) method to enhance the target. Based on the histogram information of the processed image, we designed an automatic algorithm to calculate the optimal number of clusters, which is usually manually determined in traditional cluster segmentation methods. In addition, necessary pre-segmentation processing and post-segmentation processing were adopted in order to improve the performance. Experimental results on our UV image datasets demonstrated that the proposed method can achieve good segmentation results for chemical spills from different backgrounds, especially for images with strong waves, uneven intensities, and low contrast.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献