Combining Deep Learning with Single-Spectrum UV Imaging for Rapid Detection of HNSs Spills

Author:

Mehdi Syed RazaORCID,Raza Kazim,Huang HuiORCID,Naqvi Rizwan AliORCID,Ali AmjadORCID,Song Hong

Abstract

Vital transportation of hazardous and noxious substances (HNSs) by sea occasionally suffers spill incidents causing perilous mutilations to off-shore and on-shore ecology. Consequently, it is essential to monitor the spilled HNSs rapidly and mitigate the damages in time. Focusing on on-site and early processing, this paper explores the potential of deep learning and single-spectrum ultraviolet imaging (UV) for detecting HNSs spills. Images of three floating HNSs, including benzene, xylene, and palm oil, captured in different natural and artificial aquatic sites were collected. The image dataset involved UV (at 365 nm) and RGB images for training and comparative analysis of the detection system. The You Only Look Once (YOLOv3) deep learning model is modified to balance the higher accuracy and swift detection. With the MobileNetv2 backbone architecture and generalized intersection over union (GIoU) loss function, the model achieved mean IoU values of 86.57% for UV and 82.43% for RGB images. The model yielded a mean average precision (mAP) of 86.89% and 72.40% for UV and RGB images, respectively. The average speed of 57 frames per second (fps) and average detection time of 0.0119 s per image validated the swift performance of the proposed model. The modified deep learning model combined with UV imaging is considered computationally cost-effective resulting in precise detection accuracy and significantly faster detection speed.

Funder

Key Research and Development Plan of Zhejiang Province, China

National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3