Study on Spatio-Temporal Patterns of Commuting under Adverse Weather Events: Case Study of Typhoon In-Fa

Author:

Ji Tao12ORCID,Huang Xian1,Shao Jinliang1,Zhu Yunqiang2,Deng Shejun1,Yu Shijun1,Liao Huajun3

Affiliation:

1. College of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, China

2. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. SuperMap Software Co., Ltd., Beijing 100015, China

Abstract

This study focuses on the main urban area of Yangzhou City and conducts a quantitative comparative analysis of traffic accessibility during normal weather and extreme precipitation conditions (typhoon) based on GPS trajectories of buses. From both temporal and spatial dimensions, it comprehensively examines the impact of extreme precipitation on bus travel speed, travel time, and the commuting range of residents in the main urban area of Yangzhou City. (1) Through the mining and analysis of multi-source heterogeneous big data (bus GPS trajectory data, bus network data, rainfall remote sensing data, and road network data), it is found that the rainstorm weather greatly affects the average speed and travel time of buses. In addition, when the intensity of heavy rainfall increases (decreases), the average bus speed and travel time exhibit varying degrees of spatio-temporal change. During the morning and evening rush hour commuting period of rainstorm weather, there are obvious differences in the accessibility change in each typical traffic community in the main urban area of Yangzhou city. In total, 90% of the overall accessibility change value is concentrated around −5 min~5 min, and the change range is concentrated around −25~10%. (2) To extract the four primary traffic districts (Lotus Pond, Slender West Lake, Jinghua City, and Wanda Plaza), we collected Points of Interest (POI) data from Amap and Baidu heat map, and a combination analysis of the employment–residence ratio model and proximity methods was employed. The result show that the rainstorm weather superimposed on the morning peak hour has different degrees of impact on the average speed of the above-mentioned traffic zones, with the most obvious impact on the Lotus Pond and the smallest impact on Wanda Plaza. Under the rainstorm weather, the traffic commute in the main urban area of Yangzhou in the morning and evening peak hour is basically normal. The results of this paper can help to quantify the impact of typhoon-rainstorm weather events on traffic commuting in order to provide a scientific basis for the traffic management department to effectively prevent traffic jams, ensure the reliability of the road network, and allow the traffic management department to more effectively manage urban traffic.

Funder

National Social Science Foundation of China

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

National Social Science Foundation of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3